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Abstract. A modification of the classical canonical time-independent perturbation theory is 
presented for nearly multiple-periodic systems having Hamiltonians of the form 

H = Ho(J3+AH,(w, ,  J , ;  q t ,  Pr)+A2HAw., J , ;  q r ,  pr)+ . . . 
where H , ,  H , ,  , . . are periodic functions of the angles w,. The perturbation procedure is 
based on averaging of the Hamilton-Jacobi equation over the angles w,. The existence of 
constants of motion to all orders of the perturbation theory for both non-degenerate and 
intrinsically degenerate systems is shown. 

1. Introduction 

The Poincare canonical time-independent perturbation theory is based on an approxi- 
mate solution of the Hamilton-Jacobi equation transformed to angle-action variables 
(Born 1960, Fues 1927). By its very nature, this method is adapted for calculation of 
multiple-periodic motions of conservative systems and fails if the unperturbed motion 
is not multiple-periodic, or if its multiple-periodicity is destroyed by the perturbation. 
Since, in plasma physics for example, one steadily encounters infinite motions due to 
linear as well as nonlinear instabilities, it is of interest to find a perturbation procedure 
which would be applicable also to such systems. Thus, Coffey (1969), using the Mitro- 
polskii-Zubarev method of rapidly rotating phase (Bogolyubov and Mitropolskii 1955) 
generalized by Coffey and Ford (1969), treated nearly multiple-periodic systems having 
Hamiltonians of the form 

H = HdJ ," )  + AH,(w,", J," ; qko, PPI (1.1) 

where HI is a periodic function of the angles w,". Coffey succeeded in showing that, for a 
non-degenerate system, to each angle w," there corresponds an averaged quantity J ,  
(the new action) which is constant to all orders of the perturbation theory. In the de- 
generate case such a quantity can be associated only with the proper angles (to be 
defined later), provided that the average variables can be made canonical. The con- 
ditions for this, however, are not known. 

In this paper another approach to nearly multiple-periodic systems is presented 
which by-passes these difficulties. We do not seek an averaged Hamiltonian as Coffey 
did, but, rather, an averaged Hamilton-Jacobi equation for the generator (the Hamilton 
characteristic function) of the canonical transformation that converts the original 
Hamiltonian into one containing only momenta. In 5 2 non-degenerate systems are 
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treated. A suitable ansatz for the Hamilton characteristic function makes it possible 
to solve the Hamilton-Jacobi equation by perturbation theory in such a way that from 
the requirement that the perturbed Hamilton characteristic function be periodic in 
the angles w," a reduced Hamilton-Jacobi equation results which involves only the 
variables corresponding to the non-periodic degrees of freedom. If these are not too 
many, the resulting equation may be tractable. This is certainly so if there is only one 
non-periodic degree of freedom. 

In Q 3 Hamiltonians of intrinsically degenerate nearly multiple-periodic systems are 
shown to be reducible to the form treated in Q 2. Corresponding to the resonance 
relations between the unperturbed frequencies, the transformation to improper angle- 
variables is performed so that the unperturbed Hamiltonian does not contain the cor- 
responding actions. The improper angle-action variables then occur only in the per- 
turbing Hamiltonians and are treated in the same way as the non-periodic variables 
q:, p:. In comparison with the usual degenerate perturbation theory (Born 1960, Fues 
1927) this procedure is not only conceptually simpler, but also enables one to treat 
systems in which the perturbation incites an instability. Moreover, the existence of 
constants of motion to all orders of the perturbation theory may be shown in exactly 
the same way in both the non-degenerate and the degenerate case without any restric- 
tions. 

In 0 4, as an application of the general theory, a degenerate Hamiltonian system of 
three harmonic oscillators coupled by nonlinear forces is examined. 

2. Nondegenerate systems 

We shall deal with nearly multiple-periodic systems having Hamiltonians of the form 

in which w,", J," (a = 1,2,. . . , m) are the angle-action variables corresponding to the 
unperturbed motion which is thus assumed to be multiple-periodic, and 

qko, P:  ( k  = 1,2,. . . , n)  

are the canonically conjugate variables of the non-periodic degrees of freedom. The 
unperturbed motion is assumed to be non-degenerate in the sense that the unperturbed 
frequencies 

are all nonzero and rationally independent. 2 is a small parameter and the functions 
H I ,  H2, . . . are periodic in the angles w," with period 27r. 

The Hamilton characteristic function S ,  generating the transformation of variables 
such that the new Hamiltonian is a function of only the new momenta, is expanded as 
usual into a power series in 1, the lowest-order term being an identity transformation 
of the angle-action variables w,", J: plus an unknown transformation T of the variables 
q:, p:  parametrically dependent on the new actions J, to take account of the coupling 
between the periodic and non-periodic modes of motion (the new variables are without 
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The transformation relations generated by S ,  

aT au; a% 
w,  = w,  + - + A - + A 2 - +  . , . 

aJa aJa aJa  

au; a% 
awa awa J: = J a + 1 T + A Z T +  . . . 

are now used to eliminate J: and p," from the Hamiltonian (2.1). Choosing the new 
Hamiltonian in the form E + 18 we thus obtain the Hamilton-Jacobi equation for S .  
This equation is expanded into powers of 1 and on putting E equal to Ho(Ja) there results 

(the vertical line is to denote that, on differentiation, aT/dqi  is to be substituted for p:).  
To extract from this relation the equations for x, Yz, . . . and T, an averaging process 
with respect to the angles w: will be performed. A periodic function F(w:) is decomposed 
into the mean (averaged) value (F(w:)) defined by 

(2.10) 
The functions Y; , Yz , . . are determined so as to be periodic functions of the angles 

(2.11a) 

(2.11b) 
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To suppress secularities, the function T is defined so as to nullify the averaged part of 
equation (2.8) 

Thus the calculational procedure is as follows : we first calculate the functions .U;, y2, . . . 
from equations (2.1 la), (2,11b), . . . in the form of multiple Fourier series of the angles 
w," the coefficients of which depend on the new actions J,, the old coordinates qt  and the 
derivatives of the function T with respect to q:. The functions Y; ,q, . . . are then sub- 
stituted into equation (2.12) so that, on averaging, a reduced Hamilton-Jacobi equation 
for the function T results 

(2.12) 

The new actions J ,  occur in this equation as mere parameters. A complete solution of 
this equation is to be sought containing n arbitrary constants p k  (in addition to the 
arbitrary constants J,) one of which (eg p l )  is taken to be X Any other set of n independent 
functions pk of these constants 

(2.13) 

may be taken to be the set of new momenta. By solving these relations we may express 
8, p 2 ,  p 3 , .  . . , pn as functions of J,, pk 

pk = p k ( J u ;  b, p 2 ,  p 3  ,. . . > Pn) 

= b ( J u ,  p k )  

(2.14) P2 = P2(J27 p k )  

(2.16) aT' asp; asp; 
w,  = w,O+-++-+P- + . . . 

aJ ,  aJ ,  aJ ,  

asp; a y '  
awl aw, J," = J , + ; 1 T + A 2 G +  . . . (2.17) 
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aT' asp; a u ;  
aPk aPk aPk 

aT1 asp; asp' 

Q k  = - + A - + A 2 -  + 

Pk" = - + A x + A 2 4 +  aqk aqk . . . . 

(2.18) 

(2.19) 

It may happen that the perturbed motion is again multiple-periodic. This becomes 
manifest if the averaged Hamilton-Jacobi equation (2.12) is separable so that its solution 
may be written in 'the form 

T ( J a ;  qko, P k )  = T l ( J a ;  q?, P k ) +  T2(Ja;  q:, P k ) +  . . . + K ( J a ;  qt, P k )  (2'20) 

and the phase-plane trajectories representing the dependence of aT/aq; on qf are either 
closed (libration) or periodic (rotation). Then the actions J k  may be introduced by the 
integrals 

(2.21) 

This is a special case of the relations (2.13). All degrees of freedom of the perturbed 
system are then described by angle-action variables w,,  J , ;  wk, J k .  The separability of the 
Hamilton-Jacobi equation (2.12) is of course not necessary in order that the angle- 
action variables may be introduced. 

The solution of the problem is completed by solving the equations of motion obeyed 
by the new variables w,, J , ;  Q k ,  Pk 

(2.22) 

J ,  = 0 (2.23) 

(2.24) 

Pk = 0. (2.25) 

All the new actions J ,  are therefore constants to all orders of the perturbation theory. 

3. Degenerate systems 

We again assume that the Hamiltonian has the form (2.1) 

H(wlo), JL0); qio), pio) ;  A) 
= Ho(Jio))+ AHl(wr), J $ ) ;  qio), pio))+ A2H2(w;), Jho); qio), pio)) + , . . 

p = 1,2, ..., m; k = 1,2, ..., n (3.1) 

but this time the unperturbed frequencies (2.2) fulfil s resonance relations 

r,,np + I,,R'zO'+ . . . + IpmSp = 0 (3.2) 
p = m-s+l ,m-s+2,  ..., m 

where I i j  are integers and not all I,, , I P 2 ,  . . . , I,, vanish. Corresponding to these relations 
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we introduce improper angles w,” by a homogeneous linear transformation with coeffi- 
cients I,, (Born 1960, Fues 1927) 

(3.3) 

leaving the remaining (proper) angles wLo) (a  = 1,2, . . . , m - s) and the variables qio), pio) 
(k = 1,2,. . . , n) unchanged. This transformation is generated by the function 

w; = lPlW(P’+ IPZW(ZO’+ . . . + Lpmw$) 

scwp, J; ; q(kO), P;) 
m - s  m n 

= w y J : +  1 ( I p , w ~ ~ ~ + I p 2 w ( Z ~ ’ +  . . . +Ipmw$))J,” + @p;.  (3.4) 
a= 1 p = m - s + l  k =  1 

We assume that the degeneracy is intrinsic so that the new unperturbed Hamiltonian 
Hb(JB) does not depend on the improper actions JpO. Thus, in terms of the new Variables 
introduced by the transformation (3.4), the new Hamiltonian becomes 

H ’ ( 4 ,  JB ; w,”, J; ; q;, P; ; 4 
= Hb(JB) + nH;(W:, J: ; w;, J,” ; q;, p ; )  + n%;(W:, J: ; w,”, J; ; q;, p; ,  + . . . . 

(3.5) 
In this way we have in fact reduced the problem to the one treated in the foregoing 
section. To see this it is enough to put 

0 0 .  0 
q k + r  = W m - - s + r ?  pkO+r = w m - s + r  

r = 1,2, . . . ,  s 

and to rewrite the Hamiltonian (3.5) accordingly. We obtain the Hamiltonian (2.1) 
with the only difference that the number of pairs of the angle-action variables wz, J,“ is 
diminished to m - s and the number of pairs of the non-periodic variables qf, p: increased 
to n + s. The perturbation procedure is then the same as described previously. 

Only the actions J ,  corresponding to the proper angles are constants of the motion 
to all orders of the perturbation theory. This, as follows from equation (2.23), is true 
without any restrictions. 

4. Example 

As an example illustrating the general theory we shall examine a degenerate Hamiltonian 
system of three harmonic oscillators coupled by nonlinear forces in such a way that 
the equilibrium is, in the case where the resonance relation is exactly fulfilled, unstable. 
This phenomenon occurs in the theory of nonlinear interaction of electromagnetic 
waves with positive and negative energy in non-thermal pIasmas where it is known 
under the name of explosive instability. For the physical background of the problem 
the reader is referred to SedlaEek (1974). 

The Hamiltonian is assumed in the form (3.1), with variables qi’), pio) missing 

H(w\O’, J y ;  wy, J y ’ ;  wp, J ‘ O ’ ;  3 2) 

= Ho(J‘f’, Jp’, J‘,”’) + AH1(w‘f’, J‘p’ ; wy, J‘O’ 2 ; W(O’, 3 J‘O’ 3 )  (4.1) 

(4.2) H ,  = n:Jy + Q ; J y  + n;Jy 
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H 1 -  - 1 
K(J‘o’J‘o’J‘o’ 2 3 )  1/2 COS(W\’’ + wl0’+ w$”)+ K1J‘,O)JJ$O’ C O S ( ~ W ‘ ~ ’  + w$”) 

+ K2J$0)JJ\o) COS(~W‘,~)+  wso)). (4.3) 
Thus H, represents the system of three harmonic oscillators in angle-action variables 
and H, their nonlinear coupling ( K , K l , K 2  are the coupling constants) which is 
regarded as perturbation. The formal expansion parameter A is put equal to one. 
The unperturbed frequencies ay, Cl;,  fulfil one resonance relation (3.2) 

ny+n;+n: = 0 (4.4) 
so that the canonical transformation introducing one improper angle w: and its con- 
jugate action J: reads 

w(o) = w(o) 3 = w:-wy-w; (4.5) 
2 4 9  

J‘p’ = J y  + J! , Jy) = J; + J:, J\O) = J:. (4.6) 

w(o) = 
1 4 9  

If, according to (3.6), the notation for the pair of variables w!, J! is changed to qy, py, 
the transformed Hamiltonian takes on the form (2.1) 

(4.7) 

(4.8) 

(4.9) 

H’(w?, J’: ; w;, J; ; , P?) = Hb(J7 ,  J;) + AH;(w?, Ji ; wg, J; ; qy , p?) 

Hb = nyJy + n;J; 

+ K2(J;  + py)Jpy COS( - W? + W ;  + 4:). 
= K[(Jy + py)(J; + py)py] ‘I2 COS + K 1(Jy + py)Jpy C O S ( W ~  - W ;  + 4:) 

The generating function (2.3) is now assumed in the form 

wy, J 1 ;  4, J 2  ; qy, P 3  
= wyJl+w;J2+  T ( J 1 , J z ;  q(:,p1)+A%(~y,J1; w ; ,  J 2 ;  qy,p1)+ . . . . (4.10) 

Restricting ourselves to the second-order approximation to the averaged Hamilton- 
Jacobi equation (2.12), it is sufficient to calculate only the function Y; from equation 
(2.1 la) 

On substitution into equation (2.12) one obtains the second-order Hamilton-Jacobi 
equation, averaged over the proper angles wy, w;, from which the function Tis  to be 
determined 

1 K:J:-K:Ji 3 K : J 1 - K i J 2 a T  5 K 2 - K 2  aT -A[- 4 ny-n; +- 2 ny-n; -+-U(-) aqy 4ny-R; aqy ] = d (4.13) 
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The new actions J1, J 2  are constants of the motion; they occur in equation (4.13) as 
mere parameters. Equation (4.13) is therefore the Hamilton-Jacobi equation of a 
dynamical system with only one degree of freedom, corresponding to the variables ql, 
p l .  To solve this equation, which is an ordinary differential equation of the first-order, 
is certainly simpler than to solve the original set of six first-order canonical equations 
generated by the Hamiltonian (4.1). However, to obtain an overall picture of the 
motion, solution of the Hamilton-Jacobi equation (4.13) need not be attempted because 
for this purpose the examination of this equation in the phase-plane (qy , aT/&&’) is 
sufficient. Thus one finds that the first-order approximation to the averaged Hamilton- 
Jacobi equation? (the first term on the left-hand side of equation (4.13)) generates only 
infinite non-periodic motions and that the equilibrium point J1 = J 2  = p1 = 0 is 
unstable. The usual degenerate perturbation theory would be inapplicable under such 
circumstances. The second-order approximation to the averaged Hamilton-Jacobi 
equation (the complete equation (4.13)) on the other hand limits the motion to a finite 
region of the phase-plane though the equilibrium point remains unstable. For further 
discussion which includes also the case when the resonance relation (4.4) is not fulfilled 
exactly, the reader is again referred to the paper of SedlhCek (1974). 

The new Hamiltonian 

H N l ,  52 ; 41 3 P1) = Ho(J1, J 2 ) +  l.8 (4.14) 

generates, if 8 is regarded as a constant independent of J ,  , J 2 ,  p ,  (which is one of the 
possible choices of the function (2.14)), the following canonical equations of motion 

w1 = ay, j ,  = o  (4.15) 

w 2  = a;, j 2  = o (4.16) 

41 = 0, p1 = 0. (4.17) 

The solution of these equations, transformed back to the original variables w(p’, J‘p’, 
w(,O), JIo), do), Ji0) then gives the solution of the original canonical equations associated 
with the Hamiltonian (4.1). 
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